Real-time Arbitrary Waveform Generation (AWG) is essential in various engineering and research applications, and often requires complex bespoke hardware and software. This paper introduces an AWG framework using an NVIDIA Graphics Processing Unit (GPU) and a commercially available high-speed Digital-to-Analog Converter (DAC) card, both running on a desktop personal computer (PC). The GPU accelerates the "embarrassingly" data parallel additive waveform synthesis framework for AWG, and the DAC reconstructs the generated waveform in the analog domain at high speed. The AWG framework is programmed using the developer-friendly Compute Unified Device Architecture (CUDA) runtime application programming interface from NVIDIA and is readily customizable, and scalable with additional parallel hardware. We present and characterize two different pathways for computing modulated radio-frequency (rf) waveforms: one pathway offers high-complexity simultaneous chirping of 1000 individual Nyquist-limited single-frequency tones for 35 ms at a sampling rate of 560 MB/s, and the other pathway allows simultaneous continuous chirping of 194 individual Nyquist-limited single-frequency tones at 100 MB/s, or 20 individual tones at 560 MB/s. This AWG framework is designed for fast on-the-fly rearrangement of a large stochastically-loaded optical tweezer array of single atoms or molecules into a defect-free array needed for quantum simulation and quantum computation applications.
翻译:暂无翻译