We consider quantum circuit models where the gates are drawn from arbitrary gate ensembles given by probabilistic distributions over certain gate sets and circuit architectures, which we call stochastic quantum circuits. Of main interest in this work is the speed of convergence of stochastic circuits with different gate ensembles and circuit architectures to unitary t-designs. A key motivation for this theory is the varying preference for different gates and circuit architectures in different practical scenarios. In particular, it provides a versatile framework for devising efficient circuits for implementing $t$-designs and relevant applications including random circuit and scrambling experiments, as well as benchmarking the performance of gates and circuit architectures. We examine various important settings in depth. A key aspect of our study is an "ironed gadget" model, which allows us to systematically evaluate and compare the convergence efficiency of entangling gates and circuit architectures. Particularly notable results include i) gadgets of two-qubit gates with KAK coefficients $\left(\frac{\pi}{4}-\frac{1}{8}\arccos(\frac{1}{5}),\frac{\pi}{8},\frac{1}{8}\arccos(\frac{1}{5})\right)$ (which we call $\chi$ gates) directly form exact 2- and 3-designs; ii) the iSWAP gate family achieves the best efficiency for convergence to 2-designs under mild conjectures with numerical evidence, even outperforming the Haar-random gate, for generic many-body circuits; iii) iSWAP + complete graph achieve the best efficiency for convergence to 2-designs among all graph circuits. A variety of numerical results are provided to complement our analysis. We also derive robustness guarantees for our analysis against gate perturbations. Additionally, we provide cursory analysis on gates with higher locality and found that the Margolus gate outperforms various other well-known gates.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
2+阅读 · 2024年12月19日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员