Many interpretability tools allow practitioners and researchers to explain Natural Language Processing systems. However, each tool requires different configurations and provides explanations in different forms, hindering the possibility of assessing and comparing them. A principled, unified evaluation benchmark will guide the users through the central question: which explanation method is more reliable for my use case? We introduce ferret, an easy-to-use, extensible Python library to explain Transformer-based models integrated with the Hugging Face Hub. It offers a unified benchmarking suite to test and compare a wide range of state-of-the-art explainers on any text or interpretability corpora. In addition, ferret provides convenient programming abstractions to foster the introduction of new explanation methods, datasets, or evaluation metrics.
翻译:许多可解释工具使实践者和研究人员能够解释自然语言处理系统,但每个工具都需要不同的配置,以不同的形式提供解释,从而妨碍评估和比较这些系统的可能性。一个有原则的、统一的评价基准将指导用户通过中心问题:哪一种解释方法更适合我使用?我们引入雪貂,一个容易使用的、可扩展的Python图书馆,以解释与抱动脸枢纽相结合的以变异器为基础的模型。它提供了一个统一的基准套件,以测试和比较关于任何文本或可解释性公司的各种最新解释者。此外,雪貂还提供方便的编程摘要,以促进采用新的解释方法、数据集或评价指标。