In this paper, we present a stochastic method for the simulation of Laplace's equation with a mixed boundary condition in planar domains that are polygonal or bounded by circular arcs. We call this method the Reflected Walk on Spheres algorithm. The method combines a traditional Walk on Spheres algorithm with use of reflections at the Neumann boundaries. We apply our algorithm to simulate numerical conformal mappings from certain quadrilaterals to the corresponding canonical domains, and to compute their conformal moduli. Finally, we give examples of the method on three dimensional polyhedral domains, and use it to simulate the heat flow on an L-shaped insulated polyhedron.
翻译:暂无翻译