In this work, we present a parallel scheme for machine learning of partial differential equations. The scheme is based on the decomposition of the training data corresponding to spatial subdomains, where an individual neural network is assigned to each data subset. Message Passing Interface (MPI) is used for parallelization and data communication. We use convolutional neural network layers (CNN) to account for spatial connectivity. We showcase the learning of the linearized Euler equations to assess the accuracy of the predictions and the efficiency of the proposed scheme. These equations are of particular interest for aeroacoustic problems. A first investigation demonstrated a very good agreement of the predicted results with the simulation results. In addition, we observe an excellent reduction of the training time compared to the sequential version, providing an almost perfect scalability up to 64 CPU cores.
翻译:在这项工作中,我们提出了一个对部分差异方程式进行机器学习的平行计划。这个计划基于对空间子域相关培训数据的分解,即将单个神经网络分配给每个数据子集。信息传递界面(MPI)用于平行和数据通信。我们使用进化神经网络层(CNN)来计算空间连通性。我们展示了对线化电极方程式的学习,以评估预测的准确性以及拟议方案的效率。这些方程式对大气声学问题特别感兴趣。第一次调查显示,预测的结果与模拟结果非常一致。此外,我们观察到,与相继版本相比,培训时间大大缩短,提供了近乎完美的可扩缩至64个CPU核心。