We present DeepSAT, a novel end-to-end learning framework for the Boolean satisfiability (SAT) problem. Unlike existing solutions trained on random SAT instances with relatively weak supervision, we propose applying the knowledge of the well-developed electronic design automation (EDA) field for SAT solving. Specifically, we first resort to logic synthesis algorithms to pre-process SAT instances into optimized and-inverter graphs (AIGs). By doing so, the distribution diversity among various SAT instances can be dramatically reduced, which facilitates improving the generalization capability of the learned model. Next, we regard the distribution of SAT solutions being a product of conditional Bernoulli distributions. Based on this observation, we approximate the SAT solving procedure with a conditional generative model, leveraging a novel directed acyclic graph neural network (DAGNN) with two polarity prototypes for conditional SAT modeling. To effectively train the generative model, with the help of logic simulation tools, we obtain the probabilities of nodes in the AIG being logic `1' as rich supervision. We conduct comprehensive experiments on various SAT problems. Our results show that, DeepSAT achieves significant accuracy improvements over state-of-the-art learning-based SAT solutions, especially when generalized to SAT instances that are relatively large or with diverse distributions.
翻译:我们提出DeepSAT,这是关于布利安卫星可探测性问题的新型端到端学习框架;与在随机SAT情况下培训的、监管相对薄弱的现有解决方案不同,我们提议应用先进的电子设计自动化(EDA)领域的知识,用于沙特卫星的解决;具体地说,我们首先采用逻辑合成算法,将沙特卫星的预处理过程纳入优化和反向图(AIGs)中;通过这样做,可以大大减少各种SAT实例之间的分布多样性,从而帮助提高所学模型的普及能力;接着,我们认为,分配沙特卫星的解决方案是Bernoulli有条件分布的产物;根据这一观察,我们将沙特卫星的解决程序与一个有条件的基因化模型相匹配,利用一个小说方向的环球图神经网络(DAGNN),用两个极地原型模型进行有条件的模拟;在逻辑模拟工具的帮助下,有效地培训基因化模型,我们获得了AIG中不同节的概率,即逻辑“1”的概率是有条件的,我们把Bernoulli分发视为一种产品的产品;根据这一观察结果,我们用一个有条件的模型,我们用一个有条件的模型进行全面实验,在各种沙特卫星的精确的分布上进行全面的实验,我们用各种卫星的实验,在各种卫星的实验中进行,在各种的实验中,在各种的实验中,在各种卫星的实验中,在各种卫星的实验中,在各种卫星的实验中进行重大的实验中进行重大的实验中进行,在各种的实验中进行重大的实验,在各种的实验,在各种的实验,在各种的实验中进行,在各种的实验中进行,在各种实验中进行,在比较的实验中进行,在比较的实验中进行,在比较的实验,在各种SAT的实验中进行,在比较的实验中进行,在比较的实验,在比较的实验中进行,在比较的进行,在各种的实验,在比较的实验中进行,在进行,在比较的实验,在比较的实验中进行,在比较的实验,在比较的实验中进行,在比较的实验在比较的实验在比较的实验中进行,在比较的实验在比较的实验中进行,在比较的实验中进行,在比较的实验中进行,在比较的试验中进行,在比较的改进的改进的改进的实验的