We study the problem of predicting the future performance of cryptocurrencies using social media data. We propose a new model to measure the engagement of users with topics discussed on social media based on interactions with social media posts. This model overcomes the limitations of previous volume and sentiment based approaches. We use this model to estimate engagement coefficients for 48 cryptocurrencies created between 2019 and 2021 using data from Twitter from the first month of the cryptocurrencies' existence. We find that the future returns of the cryptocurrencies are dependent on the engagement coefficients. Cryptocurrencies whose engagement coefficients are too low or too high have lower returns. Low engagement coefficients signal a lack of interest, while high engagement coefficients signal artificial activity which is likely from automated accounts known as bots. We measure the amount of bot posts for the cryptocurrencies and find that generally, cryptocurrencies with more bot posts have lower future returns. While future returns are dependent on both the bot activity and engagement coefficient, the dependence is strongest for the engagement coefficient, especially for short-term returns. We show that simple investment strategies which select cryptocurrencies with engagement coefficients exceeding a fixed threshold perform well for holding times of a few months.
翻译:我们用社交媒体数据来研究预测未来加密工作绩效的问题。 我们提出一个新的模式来衡量用户在社交媒体上根据与社交媒体的相互作用而讨论的专题的参与程度。 这个模式克服了以往基于数量和情绪的做法的局限性。 我们使用这个模式来估计2019年至2021年之间产生的48种加密工作的聘用系数,使用自加密存在第一个月起的Twitter数据计算出2019年至2021年之间产生的48种加密工作的参与系数。 我们发现,加密的未来回报取决于参与系数。 参与系数太低或太高的加密回报率较低。 低参与系数表示缺乏兴趣,而高参与系数则表示人为活动可能来自被称为机器人的自动账户。 我们测量了从加密到更多机器人职位存在第一个月的加密职位数量,发现未来的回报率较低。 虽然未来回报取决于机能活动和参与系数,但对于参与系数的依赖性最强,特别是对于短期投资回报率而言。 我们选择了一个简单的固定利率,我们选择了一个简单的固定利率,即保持一个简单的最低利率。