With the rising need of interpretable machine learning methods, there is a necessity for a rise in human effort to provide diverse explanations of the influencing factors of the model decisions. To improve the trust and transparency of AI-based systems, the EXplainable Artificial Intelligence (XAI) field has emerged. The XAI paradigm is bifurcated into two main categories: feature attribution and counterfactual explanation methods. While feature attribution methods are based on explaining the reason behind a model decision, counterfactual explanation methods discover the smallest input changes that will result in a different decision. In this paper, we aim at building trust and transparency in time series models by using motifs to generate counterfactual explanations. We propose Motif-Guided Counterfactual Explanation (MG-CF), a novel model that generates intuitive post-hoc counterfactual explanations that make full use of important motifs to provide interpretive information in decision-making processes. To the best of our knowledge, this is the first effort that leverages motifs to guide the counterfactual explanation generation. We validated our model using five real-world time-series datasets from the UCR repository. Our experimental results show the superiority of MG-CF in balancing all the desirable counterfactual explanations properties in comparison with other competing state-of-the-art baselines.
翻译:由于日益需要可解释的机器学习方法,有必要加强人类的努力,对模型决定的影响因素提供不同解释。为了提高AI系统的信任和透明度,出现了可扩展人工智能(XAI)领域。XAI模式分为两大类:特征归属和反事实解释方法。特征归属方法的基础是解释示范决定背后的原因,反事实解释方法发现了最小的投入变化,从而导致不同的决定。在本文中,我们的目标是通过使用模型来建立时间序列模型的信任和透明度,以产生反事实解释。我们建议采用Motif-Guid 反事实解释(MG-CF)这个新颖模型,产生直观的事后反事实解释,充分利用重要的模型在决策过程中提供解释信息。据我们所知,这是利用模型来指导反事实解释的生成。我们用5个真实世界时间序列模型来建立信任和透明度,用我们最理想的模型来显示我们相对的CMF-CR数据库的对比性实验性数据库。我们用5个真实时间序列模型来验证了我们相对的CRereal-Crealalalal-Crection the exalalal real realalalal-alal dequistral deal dalction the expractal exporting the other expractal expractalmentalalalalalmentalalalal exalalalalalalalalalalal exaldaldaldaldaldalse destalctions exstrals exstressalts。