Active learning for sentence understanding attempts to reduce the annotation cost by identifying the most informative examples. Common methods for active learning use either uncertainty or diversity sampling in the pool-based scenario. In this work, to incorporate both predictive uncertainty and sample diversity, we propose Virtual Adversarial Perturbation for Active Learning (VAPAL) , an uncertainty-diversity combination framework, using virtual adversarial perturbation (Miyato et al., 2019) as model uncertainty representation. VAPAL consistently performs equally well or even better than the strong baselines on four sentence understanding datasets: AGNEWS, IMDB, PUBMED, and SST-2, offering a potential option for active learning on sentence understanding tasks.
翻译:积极学习以了解刑期为目的的积极学习试图通过确定信息最丰富的实例来降低批注成本。积极学习的常用方法在以集合为基础的假设情景中使用不确定性或多样性抽样。在这项工作中,为了同时纳入预测不确定性和样本多样性,我们提议采用虚拟对抗性干扰(Miyato等人,2019年)作为模范不确定性代表,为主动学习提供不确定性组合框架(VAPAL),作为虚拟对抗性干扰(Miyato等人,2019年),为主动学习理解刑期任务提供一种潜在的选择。 VAPAL一贯表现得同样好,甚至优于四个句子理解数据集的强力基线:AGNEWS、IMDB、PUBMED和SST-2。