The task of distribution generalization concerns making reliable prediction of a response in unseen environments. The structural causal models are shown to be useful to model distribution changes through intervention. Motivated by the fundamental invariance principle, it is often assumed that the conditional distribution of the response given its predictors remains the same across environments. However, this assumption might be violated in practical settings when the response is intervened. In this work, we investigate a class of model with an intervened response. We identify a novel form of invariance by incorporating the estimates of certain features as additional predictors. Effectively, we show this invariance is equivalent to having a deterministic linear matching that makes the generalization possible. We provide an explicit characterization of the linear matching and present our simulation results under various intervention settings.
翻译:分布一般化的任务涉及可靠预测在隐蔽环境中的反应。结构性因果模型被证明对通过干预来模拟分布变化很有用。受基本逆差原则的驱使,人们常常假定,在各种环境中,预测者给出的响应的有条件分布在不同的环境中保持不变。然而,当响应被干预时,这一假设可能会在实际环境中被违反。在这项工作中,我们调查一种带有干预反应的模型类别。我们通过将某些特征的估计数作为附加预测器,发现了一种新形式的差异。实际上,我们显示这种差异相当于具有确定性的线性匹配,使得普遍性成为可能。我们提供了线性匹配的明确特征,并在各种干预环境中展示了我们的模拟结果。