Most models of complex systems have been homogeneous, i.e., all elements have the same properties (spatial, temporal, structural, functional). However, most natural systems are heterogeneous: few elements are more relevant, larger, stronger, or faster than others. In homogeneous systems, criticality -- a balance between change and stability, order and chaos -- is usually found for a very narrow region in the parameter space, close to a phase transition. Using random Boolean networks -- a general model of discrete dynamical systems -- we show that heterogeneity -- in time, structure, and function -- can broaden additively the parameter region where criticality is found. Moreover, parameter regions where antifragility is found are also increased with heterogeneity. However, maximum antifragility is found for particular parameters in homogeneous networks. Our work suggests that the "optimal" balance between homogeneity and heterogeneity is non-trivial, context-dependent, and in some cases, dynamic.
翻译:大多数复杂系统模型是同质的,即所有元素都具有相同的特性(空间、时间、结构、功能)。然而,大多数自然系统是多种多样的:很少有元素比其他系统更相关、更大、更强大或更快。在同质系统中,关键度 -- -- 变化与稳定、秩序和混乱之间的平衡 -- -- 通常是在参数空间非常狭窄的区域,接近阶段过渡。我们用随机布尔恩网络 -- -- 离散动态系统的一般模型 -- -- 表明,在时间、结构和功能方面,异质性 -- -- 可以在发现临界值的参数区域中扩大叠加。此外,发现抗脆弱性的参数区域也随着异质性而增加。然而,在同质网络的特定参数中发现最大抗脆弱性。我们的工作表明,同性和异性之间的“最佳”平衡是非三维的,环境依赖,在某些情况下是动态的。