We present the first implementation of the Active Flux method on adaptively refined Cartesian grids. The Active Flux method is a third order accurate finite volume method for hyperbolic conservation laws, which is based on the use of point values as well as cell average values of the conserved quantities. The resulting method has a compact stencil in space and time and good stability properties. The method is implemented as a new solver in ForestClaw, a software for parallel adaptive mesh refinement of patch-based solvers. On each Cartesian grid patch the single grid Active Flux method can be applied. The exchange of data between grid patches is organised via ghost cells. The local stencil in space and time and the availability of the point values that are used for the reconstruction, leads to an efficient implementation. The resulting method is third order accurate, conservative and allows the use of subcycling in time.
翻译:我们首次在适应性改进的笛卡尔网格上采用主动通量法。 主动通量法是双曲保护法的第三顺序准确量度法,其依据是点值以及被保护量的细胞平均值。 由此产生的方法在空间和时间及良好的稳定性特性上具有紧凑性能。 该方法在森林法律中作为新的求解器实施, 这是用于对基于补丁的解决问题器进行平行的适应性网格改进的软件。 在每一个笛卡尔网格上,可以使用单一的网格通量法。 电网间的数据交换是通过鬼细胞组织起来的。 局部空间和时间的超时值以及用于重建的点值的可用性能, 导致有效的实施。 由此形成的方法是第三顺序的准确性、 保守性, 并允许在时间中使用子循环。