Data centers are critical to the commercial and social activities of modern society but are also major electricity consumers. To minimize their environmental impact, it is imperative to make data centers more energy efficient while maintaining a high quality of service (QoS). Bearing this consideration in mind, we develop an analytical model using queueing theory for evaluating the QoS of a data center. Furthermore, based on this model, we develop a domain-specific evolutionary optimization framework featuring a tailored solution representation and a constraint-aware initialization operator for finding the optimal placement of virtual network functions in a data center that optimizes multiple conflicting objectives with regard to energy consumption and QoS. In particular, our framework is applicable to any existing evolutionary multi-objective optimization algorithm in a plug-in manner. Extensive experiments validate the efficiency and accuracy of our QoS model as well as the effectiveness of our tailored algorithms for virtual network function placement problems at various scales.
翻译:数据中心是现代社会商业和社交活动的关键,但也是主要的电力消耗者。为了最小化它们的环境影响,必须使数据中心更具能源效率,同时保持高质量的服务(QoS)。在此背景下,我们使用排队论开发了一个分析模型来评估数据中心的QoS。此外,基于该模型,我们开发了一种领域特定的进化优化框架,该框架具有定制的解决方案表示和一个约束感知初始化运算符,以寻找在数据中心中部署虚拟网络功能的最优位置,该位置优化了与能源消耗和QoS相关的多个冲突目标。特别地,我们的框架适用于任何现有的进化多目标优化算法,以插件方式实现。广泛的实验验证了我们QoS模型的效率和准确性,以及我们为各种规模的虚拟网络功能部署问题量身定制的算法的有效性。