With the rapid development of biomedical software and hardware, a large amount of relational data interlinking genes, proteins, chemical components, drugs, diseases, and symptoms has been collected for modern biomedical research. Many graph-based learning methods have been proposed to analyze such type of data, giving a deeper insight into the topology and knowledge behind the biomedical data, which greatly benefit to both academic research and industrial application for human healthcare. However, the main difficulty is how to handle high dimensionality and sparsity of the biomedical graphs. Recently, graph embedding methods provide an effective and efficient way to address the above issues. It converts graph-based data into a low dimensional vector space where the graph structural properties and knowledge information are well preserved. In this survey, we conduct a literature review of recent developments and trends in applying graph embedding methods for biomedical data. We also introduce important applications and tasks in the biomedical domain as well as associated public biomedical datasets.


翻译:随着生物医学软件和硬件的迅速发展,为现代生物医学研究收集了大量关联数据,将基因、蛋白质、化学成分、药物、疾病和症状联系起来,为现代生物医学研究收集了大量相关数据,提出了许多基于图表的学习方法,以分析这类数据,更深入地了解生物医学数据背后的地形学和知识,这对学术研究和人类保健工业应用都大有裨益。然而,主要困难在于如何处理生物医学图的高维度和广度。最近,图表嵌入方法为处理上述问题提供了切实有效的方法。它把基于图表的数据转换成一个低维矢量的低维量空间,其中图表结构属性和知识信息得到妥善保存。在这次调查中,我们对生物医学数据应用图形嵌入方法的最新动态和趋势进行了文献审查。我们还介绍了生物医学领域的重要应用和任务,以及相关的公共生物医学数据集。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
35+阅读 · 2020年1月2日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关VIP内容
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员