The availability of quantitative methods that can analyze text has provided new ways of examining literature in a manner that was not available in the pre-information era. Here we apply comprehensive machine learning analysis to the work of William Shakespeare. The analysis shows clear change in style of writing over time, with the most significant changes in the sentence length, frequency of adjectives and adverbs, and the sentiments expressed in the text. Applying machine learning to make a stylometric prediction of the year of the play shows a Pearson correlation of 0.71 between the actual and predicted year, indicating that Shakespeare's writing style as reflected by the quantitative measurements changed over time. Additionally, it shows that the stylometrics of some of the plays is more similar to plays written either before or after the year they were written. For instance, Romeo and Juliet is dated 1596, but is more similar in stylometrics to plays written by Shakespeare after 1600. The source code for the analysis is available for free download.


翻译:可以分析文字的定量方法的可用性提供了以信息前时代所不具备的方式审查文学的新方式。 我们在这里对威廉·莎士比亚的工作进行全面的机器学习分析。 分析显示,随着时间的推移,写作风格发生了明显变化, 句长、 形容词和动词频率以及文字中表达的情绪都发生了最显著的变化。 应用机器来对剧本年度进行轮廓学预测, 显示实际年份和预测年份之间有0.71的皮尔逊相关性, 表明数量测量反映的莎士比亚的写作风格随时间变化。 此外, 分析还显示, 一些剧的台式比在写作的年份前后更类似。 例如, 罗密和朱丽叶是1596年的, 但与莎士比1600年后的剧体格学则更相似。 分析的来源代码可供免费下载。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
10+阅读 · 2017年12月29日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员