We propose Future Discriminators for Generation (FUDGE), a flexible and modular method for controlled text generation. Given a pre-existing model G for generating text from a distribution of interest, FUDGE enables conditioning on a desired attribute a (for example, formality) while requiring access only to G's output logits. FUDGE learns an attribute predictor operating on a partial sequence, and uses this predictor's outputs to adjust G's original probabilities. We show that FUDGE models terms corresponding to a Bayesian decomposition of the conditional distribution of G given attribute a. Moreover, FUDGE can easily compose predictors for multiple desired attributes. We evaluate FUDGE on three tasks -- couplet completion in poetry, topic control in language generation, and formality change in machine translation -- and observe gains in all three tasks.
翻译:我们提出“下一代未来差异分析者”(FUDGE),这是受控文本生成的一种灵活和模块化的方法。鉴于先前存在一种G型模型,用于根据利益分布生成文本,FUDGE能够以理想属性(例如形式)为条件,而只要求访问G输出日志。FUDGE学习了部分序列的属性预测器,并使用该预测器的输出来调整G原始概率。我们显示,FUDGE的模型术语与Bayesian对G给定属性(a)有条件分布的分解相对应。此外,FUDGE可以很容易地为多个预期属性编造预测器。我们评估了FUDGE的三项任务 -- -- 诗、语言生成主题控制和机器翻译形式变化的合并完成,并观察所有三项任务的成果。