We propose Future Discriminators for Generation (FUDGE), a flexible and modular method for controlled text generation. Given a pre-existing model G for generating text from a distribution of interest, FUDGE enables conditioning on a desired attribute a (for example, formality) while requiring access only to G's output logits. FUDGE learns an attribute predictor operating on a partial sequence, and uses this predictor's outputs to adjust G's original probabilities. We show that FUDGE models terms corresponding to a Bayesian decomposition of the conditional distribution of G given attribute a. Moreover, FUDGE can easily compose predictors for multiple desired attributes. We evaluate FUDGE on three tasks -- couplet completion in poetry, topic control in language generation, and formality change in machine translation -- and observe gains in all three tasks.


翻译:我们提出“下一代未来差异分析者”(FUDGE),这是受控文本生成的一种灵活和模块化的方法。鉴于先前存在一种G型模型,用于根据利益分布生成文本,FUDGE能够以理想属性(例如形式)为条件,而只要求访问G输出日志。FUDGE学习了部分序列的属性预测器,并使用该预测器的输出来调整G原始概率。我们显示,FUDGE的模型术语与Bayesian对G给定属性(a)有条件分布的分解相对应。此外,FUDGE可以很容易地为多个预期属性编造预测器。我们评估了FUDGE的三项任务 -- -- 诗、语言生成主题控制和机器翻译形式变化的合并完成,并观察所有三项任务的成果。

1
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
71+阅读 · 2020年10月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
207+阅读 · 2019年9月30日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
5+阅读 · 2021年1月7日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员