In this paper, we consider controllability as a means to satisfy dynamic preferences of users, enabling them to control recommendations such that their current preference is met. While deep models have shown improved performance for collaborative filtering, they are generally not amenable to fine grained control by a user, leading to the development of methods like deep language critiquing. We propose an alternate view, where instead of keyphrase based critiques, a user is provided 'knobs' in a disentangled latent space, with each knob corresponding to an item aspect. Disentanglement here refers to a latent space where generative factors (here, a preference towards an item category like genre) are captured independently in their respective dimensions, thereby enabling predictable manipulations, otherwise not possible in an entangled space. We propose using a (semi-)supervised disentanglement objective for this purpose, as well as multiple metrics to evaluate the controllability and the degree of personalization of controlled recommendations. We show that by updating the disentangled latent space based on user feedback, and by exploiting the generative nature of the recommender, controlled and personalized recommendations can be produced. Through experiments on two widely used collaborative filtering datasets, we demonstrate that a controllable recommender can be trained with a slight reduction in recommender performance, provided enough supervision is provided. The recommendations produced by these models appear to both conform to a user's current preference and remain personalized.


翻译:在本文中,我们认为控制是满足用户动态偏好的一种手段,使用户能够控制建议,从而满足当前的偏好。虽然深层模型显示合作过滤的性能有所改善,但通常不易由用户微细细细细细细地控制,从而导致开发深语言滑动等方法。我们提议另一种观点,即使用一个(半)超强的分解目标,而不是基于关键词的批评,而提供一个用户在一个不相干的潜在空间里,每个 knob 对应项目偏好。这里的分歧是指一个潜在的空间,在这个空间里,基因因素(这里,偏好像基因一样的物品类别)在各自的层面独立捕捉,从而使得可以进行可预测的操纵,否则不可能在纠缠的空间里开发出一个类似的方法。我们提议使用一个(半)超强的分解目标,以及多个衡量尺度来评价受控建议的可控性和个性化程度。我们通过更新基于用户反馈的分解隐蔽空间,以及利用当前精度性性化性分析性能,从而通过对用户进行足够细化的精确性化的测试,可以提供一种经过培训的实验。

0
下载
关闭预览

相关内容

【AAAI2021】元学习器的冷启动序列推荐
专知会员服务
41+阅读 · 2020年12月19日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
3+阅读 · 2018年12月21日
VIP会员
相关VIP内容
【AAAI2021】元学习器的冷启动序列推荐
专知会员服务
41+阅读 · 2020年12月19日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员