Broken adaptive ridge (BAR) is a computationally scalable surrogate to $L_0$-penalized regression, which involves iteratively performing reweighted $L_2$ penalized regressions and enjoys some appealing properties of both $L_0$ and $L_2$ penalized regressions while avoiding some of their limitations. In this paper, we extend the BAR method to the semi-parametric accelerated failure time (AFT) model for right-censored survival data. Specifically, we propose a censored BAR (CBAR) estimator by applying the BAR algorithm to the Leurgan's synthetic data and show that the resulting CBAR estimator is consistent for variable selection, possesses an oracle property for parameter estimation {and enjoys a grouping property for highly correlation covariates}. Both low and high dimensional covariates are considered. The effectiveness of our method is demonstrated and compared with some popular penalization methods using simulations. Real data illustrations are provided on a diffuse large-B-cell lymphoma data and a glioblastoma multiforme data.


翻译:断裂的适应性脊(BAR)是一种可计算到 $L_0美元 的折叠替代物,它涉及迭代地执行重加权的2美元 折叠回归,具有某些具有吸引力的属性,在避免某些限制的同时,有0.0美元 和0.2美元 折叠回归,在避免其某些限制的情况下。在本文中,我们将巴氏法扩展至半参数加速故障模型(AFT),用于进行右检查的存活数据。具体地说,我们建议对莱尔根的合成数据采用经审查的BAR(CBAR)估计值,并表明由此产生的CBAR估计值对于变量选择是一致的,对参数估计具有一种或极值属性,对高度相关共变差具有一种组合属性。我们采用的方法是低维和高维共变。我们的方法的有效性得到了演示,并且与一些使用模拟的流行的惩罚性方法相比较。我们使用的是一些通用的惩罚性方法。在一个分散的大型B细胞淋巴数据和一个多式数据上提供了真实的数据插图。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月16日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员