In this paper, we propose a $\mu$-mode integrator for computing the solution of stiff evolution equations. The integrator is based on a $d$-dimensional splitting approach and uses exact (usually precomputed) one-dimensional matrix exponentials. We show that the action of the exponentials, i.e. the corresponding batched matrix-vector products, can be implemented efficiently on modern computer systems. We further explain how $\mu$-mode products can be used to compute spectral transforms efficiently even if no fast transform is available. We illustrate the performance of the new integrator by solving, among the others, three-dimensional linear and nonlinear Schr\"odinger equations, and we show that the $\mu$-mode integrator can significantly outperform numerical methods well established in the field. We also discuss how to efficiently implement this integrator on both multi-core CPUs and GPUs. Finally, the numerical experiments show that using GPUs results in performance improvements between a factor of $10$ and $20$, depending on the problem.
翻译:在本文中, 我们提出一个 $\ mu$- mode 集成器, 用于计算僵硬进化方程式的解决方案。 集成器基于 $d$ 的维分法, 并使用精确( 通常预先计算) 的一维矩阵指数。 我们显示指数的动作, 即相应的分批矩阵- 矢量器产品, 可以在现代计算机系统中高效实施。 我们进一步解释如何使用 $\ mu$- mode 产品来高效计算光谱变异。 我们通过解析三维线性和非线性 Schr\ “ odinger 等式等式, 来演示新的集成器的性能。 我们显示, $\ mu$- modroctor 的动作可以显著地超过在现场确立的数字方法 。 我们还讨论如何在多核心 CPU 和 GPU 上高效地实施这个集成器 。 最后, 数字实验显示, 使用 GPU 能够根据问题在 $ $ $ 和 20 美元 之间的 倍之间进行性变换 。