Quantum Machine Learning (QML) hasn't yet demonstrated extensively and clearly its advantages compared to the classical machine learning approach. So far, there are only specific cases where some quantum-inspired techniques have achieved small incremental advantages, and a few experimental cases in hybrid quantum computing are promising considering a mid-term future (not taking into account the achievements purely associated with optimization using quantum-classical algorithms). The current quantum computers are noisy and have few qubits to test, making it difficult to demonstrate the current and potential quantum advantage of QML methods. This study shows that we can achieve better classical encoding and performance of quantum classifiers by using Linear Discriminant Analysis (LDA) during the data preprocessing step. As a result, Variational Quantum Algorithm (VQA) shows a gain of performance in balanced accuracy with the LDA technique and outperforms baseline classical classifiers.
翻译:量子机器学习(QML)尚未与古典机器学习(QML)法相比,广泛和明确地展示其优势。 到目前为止,只有某些量子激发技术取得了小的增量优势,而一些混合量子计算实验案例有希望考虑中期未来(没有考虑到纯粹与使用量子古典算法优化相关的成就 ) 。 目前的量子计算机很吵,几乎没有量子可以测试,因此难以展示QML方法目前和潜在的量子优势。 这项研究表明,在数据预处理阶段,通过使用线性分辨分析(LDA),我们可以实现更好的量子分类标准编码和性能。 结果,VQA(VQA)显示,与LDA技术的平衡精度和超出基线古典分类法的绩效。