Electron cryo-microscopy (cryo-EM) produces three-dimensional (3D) maps of the electrostatic potential of biological macromolecules, including proteins. Along with knowledge about the imaged molecules, cryo-EM maps allow de novo atomic modelling, which is typically done through a laborious manual process. Taking inspiration from recent advances in machine learning applications to protein structure prediction, we propose a graph neural network (GNN) approach for automated model building of proteins in cryo-EM maps. The GNN acts on a graph with nodes assigned to individual amino acids and edges representing the protein chain. Combining information from the voxel-based cryo-EM data, the amino acid sequence data and prior knowledge about protein geometries, the GNN refines the geometry of the protein chain and classifies the amino acids for each of its nodes. Application to 28 test cases shows that our approach outperforms the state-of-the-art and approximates manual building for cryo-EM maps with resolutions better than 3.5 \r{A}.


翻译:电子冷冻-显微镜(cryo-EM)生成了三维(3D)生物大型分子(包括蛋白质)的静电潜力图,其中包括蛋白质。除对成像分子的了解外,冷冻-EM地图还允许进行新原子建模,这种建模通常是通过一个艰苦的人工过程完成的。我们从最近机器学习对蛋白结构预测应用的进展中得到的启发,提出了在冷冻-EM地图中自动建立蛋白模型的图形神经网络(GNN)方法。GNN在一张图上采取行动,配有用于代表蛋白链的个人氨基酸和边缘的节点。将基于浮质的冷冻-EM数据、氨基酸序列数据和蛋白色谱先前知识的信息结合起来,GNN对蛋白链的几何方法进行精细化,并对每个结点的氨酸进行分类。对28个测试案例的应用表明,我们的方法超过了分辨率大于3.5\\{A}用于冷冻-EM地图的状态和近手动建筑。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员