Recently, the concept of teaching has been introduced into machine learning, in which a teacher model is used to guide the training of a student model (which will be used in real tasks) through data selection, loss function design, etc. Learning to reweight, which is a specific kind of teaching that reweights training data using a teacher model, receives much attention due to its simplicity and effectiveness. In existing learning to reweight works, the teacher model only utilizes shallow/surface information such as training iteration number and loss/accuracy of the student model from training/validation sets, but ignores the internal states of the student model, which limits the potential of learning to reweight. In this work, we propose an improved data reweighting algorithm, in which the student model provides its internal states to the teacher model, and the teacher model returns adaptive weights of training samples to enhance the training of the student model. The teacher model is jointly trained with the student model using meta gradients propagated from a validation set. Experiments on image classification with clean/noisy labels and neural machine translation empirically demonstrate that our algorithm makes significant improvement over previous methods.


翻译:最近,教学概念被引入机器学习,在机器学习中使用了教师模型,通过数据选择、丢失功能设计等,指导学生模式(将用于实际任务)的培训。 学习再加权是一种特定类型的教学,使用教师模型对培训数据进行再加权,因其简单和有效性而得到极大关注。在现有关于再加权工作的学习中,教师模型只使用浅/表面信息,如培训迭代数和从培训/校准组得到的学生模型的损失/准确性等培训,但忽略了学生模型的内部状态,该状态限制了学习再加权的潜力。在这项工作中,我们建议改进数据再加权算法,学生模型向教师模型提供内部状态,教师模型将培训样本的适应性加权数用于加强学生模型的培训。教师模型与学生模型共同培训时使用了从校准集中传播的元梯度。用清洁/神经标签和神经机器翻译对图像分类进行实验,实验表明我们的算法比以往方法有了重大改进。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
29+阅读 · 2020年11月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
14+阅读 · 2019年9月11日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
14+阅读 · 2019年9月11日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
11+阅读 · 2018年7月8日
Top
微信扫码咨询专知VIP会员