We develop the theory of hypothesis testing based on the e-value, a notion of evidence that, unlike the p-value, allows for effortlessly combining results from several studies in the common scenario where the decision to perform a new study may depend on previous outcomes. Tests based on e-values are safe, i.e. they preserve Type-I error guarantees, under such optional continuation. We define growth-rate optimality (GRO) as an analogue of power in an optional continuation context, and we show how to construct GRO e-variables for general testing problems with composite null and alternative, emphasizing models with nuisance parameters. GRO e-values take the form of Bayes factors with special priors. We illustrate the theory using several classic examples including a one-sample safe t-test and the 2 x 2 contingency table. Sharing Fisherian, Neymanian and Jeffreys-Bayesian interpretations, e-values may provide a methodology acceptable to adherents of all three schools.
翻译:我们开发了基于电子价值的假设测试理论,这是一种证据概念,与P值不同,它允许不费力地将共同设想中若干研究的结果结合起来,在共同设想中,进行新研究的决定可能取决于以往的结果。基于电子价值的测试是安全的,即在这种可选的延续下保留了第一类错误的保证。我们将增长率最佳性(GRO)定义为在可选的延续背景下的一种权力模拟,我们展示了如何建造GRO电子变量,用于综合无效和可选的通用测试问题,强调有麻烦参数的模型。GRO电子价值以具有特殊前科的Bayes因素的形式出现。我们用几个典型的例子来说明这一理论,包括一模范安全测试和2x2应急表。分享渔业家、Neymanian和Jeffers-Bayesian解释,电子价值可以为所有三个学校的信徒提供可以接受的方法。</s>