In this letter, we present an interactive probabilistic mapping framework for a mobile manipulator picking objects from a pile. The aim is to map the scene, actively decide where to go next and which object to pick, make changes to the scene by picking the chosen object, and then map these changes alongside. The proposed framework uses a novel dynamic Gaussian Process (GP) Implicit Surface method to incrementally build and update the scene map that reflects environment changes. Actively the framework provides the next-best-view, balancing the need for picking object reachability with map information gain (IG). To enforce a priority of visiting boundary segments over unknown regions, the IG formulation includes an uncertainty gradient-based frontier score by exploiting the GP kernel derivative. This leads to an efficient strategy that addresses the often conflicting requirement of unknown environment exploration and object picking exploitation given a limited execution horizon. We demonstrate the effectiveness of our framework with software simulation and real-life experiments.
翻译:在此信中,我们提出了一个移动操纵器从堆积中采集物体的互动概率绘图框架。 目的是绘制场景, 积极决定下一步到哪里, 选择哪个对象, 通过选择选定的对象对场进行修改, 然后同时绘制这些变化的地图。 拟议框架使用一种新的动态高山进程隐形表面方法, 逐步建立和更新反映环境变化的场景地图。 该框架提供了下一个最佳视角, 平衡了选择物体可到达性的需求与地图信息增益之间的平衡。 为了在未知区域实施访问边界段的优先排序, IG 配方包括利用GP内核衍生物的不确定的梯度边界分。 这导致一个高效的战略, 满足了在有限的执行视野下进行未知环境勘探和物体采摘的经常相互冲突的要求。 我们用软件模拟和真实生命实验来展示我们框架的有效性。