For a constraint satisfaction problem (CSP), a robust satisfaction algorithm is one that outputs an assignment satisfying most of the constraints on instances that are near-satisfiable. It is known that the CSPs that admit efficient robust satisfaction algorithms are precisely those of bounded width, i.e., CSPs whose satisfiability can be checked by a simple local consistency algorithm (eg., 2-SAT or Horn-SAT in the Boolean case). While the exact satisfiability of a bounded width CSP can be checked by combinatorial algorithms, the robust algorithm is based on rounding a canonical Semidefinite programming(SDP) relaxation. In this work, we initiate the study of robust satisfaction algorithms for promise CSPs, which are a vast generalization of CSPs that have received much attention recently. The motivation is to extend the theory beyond CSPs, as well as to better understand the power of SDPs. We present robust SDP rounding algorithms under some general conditions, namely the existence of majority or alternating threshold polymorphisms. On the hardness front, we prove that the lack of such polymorphisms makes the PCSP hard for all pairs of symmetric Boolean predicates. Our method involves a novel method to argue SDP gaps via the absence of certain colorings of the sphere, with connections to sphere Ramsey theory. We conjecture that PCSPs with robust satisfaction algorithms are precisely those for which the feasibility of the canonical SDP implies (exact) satisfiability. We also give a precise algebraic condition, known as a minion characterization, of which PCSPs have the latter property.


翻译:对于约束性满意度问题(CSP),强力的满意度算法是一种输出任务,它满足了近乎令人满意的情况的大多数限制。众所周知,接受高效稳健的满意度算法的CSP恰恰是受约束宽度的算法,即:其可视性可以通过简单的本地一致性算法(例如,Boolean 案中的2SAT或Horn-SAT)加以检查。虽然一个受约束宽度的CSP的准确相对性能可以通过组合式算法加以检查,但强力的算法是基于轮替一个卡通性半峰值(SDP)编程放松的。在这项工作中,我们开始对承诺的CSP的强力满意度算法进行研究,这是最近人们非常关注的CSP的广泛概括性算法。动机是将理论扩大到CSP之外,以及更好地了解SDP的力量。在某种一般条件下,即存在多数或交替的基点多级的多级调算法(SDP)的存在。在硬性化前,我们证明SSP的硬性调算法系统缺乏一种精确的缩缩法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2018年9月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月11日
On the Fusion Strategies for Federated Decision Making
Arxiv
0+阅读 · 2023年3月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2018年9月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员