In this paper, we propose a fully discrete soft thresholding trigonometric polynomial approximation on $[-\pi,\pi],$ named Lasso trigonometric interpolation. This approximation is an $\ell_1$-regularized discrete least squares approximation under the same conditions of classical trigonometric interpolation on an equidistant grid. Lasso trigonometric interpolation is sparse and meanwhile it is an efficient tool to deal with noisy data. We theoretically analyze Lasso trigonometric interpolation for continuous periodic function. The principal results show that the $L_2$ error bound of Lasso trigonometric interpolation is less than that of classical trigonometric interpolation, which improved the robustness of trigonometric interpolation. This paper also presents numerical results on Lasso trigonometric interpolation on $[-\pi,\pi]$, with or without the presence of data errors.
翻译:在本文中,我们建议对 $[\\pi,\pi], 名为Lasso 三角对数插图进行完全离散的软阈值三角近似值。 这个近似值是在等离异电网的经典三角对数插图相同条件下,在等离离离离离离离离离离离最小正方形近似值为$_1美元。 Laso 三角对数插图是稀有的,同时它也是处理繁杂数据的一个有效工具。 我们从理论上分析连续周期函数的Lasso三角对数插图。 主要结果显示,Lasso 三角对数插图的误差小于经典三角对数插图的误差值,后者提高了三角对角内插的稳健性。 本文还介绍了对 $[\\pi,\pi] 的Lasso三角对数插图干涉的数值结果, 不论是否存在数据错误。