DScribe is a software package for machine learning that provides popular feature transformations ("descriptors") for atomistic materials simulations. DScribe accelerates the application of machine learning for atomistic property prediction by providing user-friendly, off-the-shelf descriptor implementations. The package currently contains implementations for Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered Symmetry Function (ACSF) and Smooth Overlap of Atomic Positions (SOAP). Usage of the package is illustrated for two different applications: formation energy prediction for solids and ionic charge prediction for atoms in organic molecules. The package is freely available under the open-source Apache License 2.0.
翻译:Dscribe是机器学习的软件包,为原子材料模拟提供流行特征转换(“描述器”);Dscribe通过提供方便用户的现成描述器,加速机器学习用于原子财产预测;该软件包目前包含库伦矩阵、Ewald sum 矩阵、正弦矩阵、多体感应仪表(MBTR)、原子对称函数(ACSF)和原子位置的平滑重叠(SOAP)的实施;该软件包的用途为两种不同的应用作了说明:形成固体能源预测和有机分子原子的电荷预测;该软件包在开放源阿帕契许可证2.0下免费提供。