This article adds to the understanding of teachers' visual expertise by measuring visual information processing in real-world classrooms (mobile eye-tracking) with the newly introduced Gaze Relational Index (GRI) metric, which is defined as the ratio of mean fixation duration to mean fixation number. In addition, the aim was to provide a methodological contribution to future research by showing to what extent the selected configurations (i.e. varying velocity thresholds and fixation merging) of the eye movement event detection algorithm for detecting fixations and saccades influence the results of eye-tracking studies. Our study leads to two important take-home messages: First, by following a novice-expert paradigm (2 novice teachers & 2 experienced teachers), we found that the GRI can serve as a sensitive measure of visual expertise. As hypothesized, experienced teachers' GRI was lower, suggesting that their more fine-graded organization of domain-specific knowledge allows them to fixate more rapidly and frequently in the classroom. Second, we found that the selected velocity threshold parameter alter and, in the worst case, bias the results of an eye-tracking study. Therefore, in the interest of further generalizability of the results within visual expertise research, we emphasize that it is highly important to report configurations that are relevant for the identification of eye movements.


翻译:本文通过测量新近开发的注视关系指数(Gaze Relational Index,GRI)度量师生在真实课堂(移动眼动跟踪技术)中的视觉信息处理。其中,GRI被定义为注视持续时间均值与注视次数均值的比值。同时,本文还通过展示眼动事件检测算法所选择的配置(即不同速度阈值和注视合并)对眼动研究的结果产生的影响程度,为今后研究提供了方法学意义的贡献。本研究得出了两个重要的结论:首先,通过遵循新手-专家范式(2名新手教师和2名有经验的教师),我们发现GRI可以作为视觉专业能力的敏感度量。与假设相符,有经验的老师的GRI更低,说明他们更细致地组织特定领域的知识,从而可以在课堂上更快速而频繁地注视。其次,我们发现所选择的速度阈值参数会影响结果,并且在最坏的情况下会引起结果偏差。因此,在视觉专业研究的进一步普适性上,强调报告用于识别眼动的相关配置是非常重要的。

0
下载
关闭预览

相关内容

【KDD2022教程】图算法公平性:方法与趋势,200页ppt
专知会员服务
41+阅读 · 2022年8月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关VIP内容
【KDD2022教程】图算法公平性:方法与趋势,200页ppt
专知会员服务
41+阅读 · 2022年8月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员