When controllers (brains) and morphologies (bodies) of robots simultaneously evolve, this can lead to a problem, namely the brain & body mismatch problem. In this research, we propose a solution of lifetime learning. We set up a system where modular robots can create offspring that inherit the bodies of parents by recombination and mutation. With regards to the brains of the offspring, we use two methods to create them. The first one entails solely evolution which means the brain of a robot child is inherited from its parents. The second approach is evolution plus learning which means the brain of a child is inherited as well, but additionally is developed by a learning algorithm - RevDEknn. We compare these two methods by running experiments in a simulator called Revolve and use efficiency, efficacy, and the morphology intelligence of the robots for the comparison. The experiments show that the evolution plus learning method does not only lead to a higher fitness level, but also to more morphologically evolving robots. This constitutes a quantitative demonstration that changes in the brain can induce changes in the body, leading to the concept of morphological intelligence, which is quantified by the learning delta, meaning the ability of a morphology to facilitate learning.


翻译:当机器人的控制器(布林斯)和形态(体)同时演变时,这可能导致一个问题,即大脑和身体的不匹配问题。在这个研究中,我们提出终生学习的解决办法。我们建立了一个系统,模块机器人可以创造后代,通过重组和突变来继承父母的身体。关于后代的大脑,我们使用两种方法来创造这些后代。第一个方法只涉及进化,这意味着机器人孩子的大脑从父母那里继承。第二个方法是进化加上学习,这意味着儿童的大脑也被继承,但另一个则是学习算法-RevDEKnn开发出来的。我们比较这两种方法,在模拟器中进行实验,称为循环和使用效率、功效和机器人的形态学智能,以进行比较。实验表明进化加学习方法不仅导致更高健康水平,而且使机器人在更畸形上演化。这构成了一个量化的演示,即大脑的变化可以诱导身体的变化,导致形态学学能力的概念,通过学习来量化。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
8+阅读 · 2021年5月21日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员