Given a {features, target} dataset, we introduce an incremental algorithm that constructs an aggregate regressor, using an ensemble of neural networks. It is well known that ensemble methods suffer from the multicollinearity issue, which is the manifestation of redundancy arising mainly due to the common training-dataset. In the present incremental approach, at each stage we optimally blend the aggregate regressor with a newly trained neural network under a convexity constraint which, if necessary, induces negative correlations. Under this framework, collinearity issues do not arise at all, rendering so the method both accurate and robust.


翻译:考虑到 { 属性, 目标 } 数据集, 我们引入了一种递增算法, 利用神经网络的组合组合构建一个综合递减器。 众所周知, 共性方法受到多线性问题的影响, 这是主要由于共同培训数据集引起的冗余的表现。 在目前的递增方法中, 在每一个阶段, 我们优化地将综合递减器与新培训的神经网络混合在一起, 并受共性制约, 必要时, 引发负相关性。 在这个框架内, 共性问题根本不出现, 这使得这种方法既准确又健全。

0
下载
关闭预览

相关内容

【干货书】实体搜索,Entity-Oriented Search,358页pdf
专知会员服务
34+阅读 · 2021年4月9日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月4日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年6月19日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
3+阅读 · 2020年7月16日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月4日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员