In this paper, we study the problem of minimizing the age of information when a source can transmit status updates over two heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled as a time-correlated Gilbert-Elliot channel, where information can be transmitted at a high rate when the channel is in the ''ON'' state. The reliable channel provides a deterministic but lower data rate. The scheduling strategy determines the channel to be used for transmission with the aim to minimize the time-average age of information (AoI). The optimal scheduling problem is formulated as a Markov Decision Process (MDP), which in our setting poses some significant challenges because e.g., supermodularity does not hold for part of the state space. We show that there exists a multi-dimensional threshold-based scheduling policy that is optimal for minimizing the age. A low-complexity bisection algorithm is further devised to compute the optimal thresholds. Numerical simulations are provided to compare different scheduling policies.


翻译:在本文中, 我们研究在信息来源可以通过两个不同渠道传输状态更新信息时, 将信息年龄最小化的问题。 我们的工作是由5GmmWave技术的最新发展推动的, 5GmmWave技术的传输可能发生在不可靠但快速的频道( 例如, mmWave) 频道或一个缓慢的可靠频道( 例如, sub-6GHz) 。 不可靠的频道建模为一个与时间有关Gilbert- Elliot 频道, 当频道处于“ ON” 状态时, 信息可以以高速度传输。 可靠的频道提供了一种确定性但较低的数据率。 排期战略决定了传输的频道, 目的是尽可能缩短信息的平均时间年龄( AoI) 。 最佳的排程问题被写成一个Markov 决策过程( MDP ), 因为在我们的设置中, 超时标不会维持部分国家空间。 我们显示, 存在一种基于多维的阈值的调度政策, 最有利于最小化年龄。 低的双轴算算算算法进一步对比最佳的模型。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
14+阅读 · 2021年5月21日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Yann Lecun 纽约大学《深度学习(PyTorch)》课程(2020)PPT
专知会员服务
179+阅读 · 2020年3月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
1+阅读 · 2021年8月18日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Yann Lecun 纽约大学《深度学习(PyTorch)》课程(2020)PPT
专知会员服务
179+阅读 · 2020年3月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员