Existing monocular 3D object detection methods have been demonstrated on rectilinear perspective images and fail in images with alternative projections such as those acquired by fisheye cameras. Previous works on object detection in fisheye images have focused on 2D object detection, partly due to the lack of 3D datasets of such images. In this work, we show how to use existing monocular 3D object detection models, trained only on rectilinear images, to detect 3D objects in images from fisheye cameras, without using any fisheye training data. We outperform the only existing method for monocular 3D object detection in panoramas on a benchmark of synthetic data, despite the fact that the existing method trains on the target non-rectilinear projection whereas we train only on rectilinear images. We also experiment with an internal dataset of real fisheye images.
翻译:现有的单眼三维物体探测方法已在直角图像中展示,在图像中也失败了,并有替代预测,如鱼眼照相机获得的预测。以往关于鱼眼图像中物体探测的工作侧重于二维物体探测,部分原因是缺乏此类图像的三维数据集。在这项工作中,我们展示了如何利用现有单眼三维物体探测模型,仅对直径图像进行培训,在鱼眼摄像机图像中探测三维物体,而没有使用任何鱼眼训练数据。我们超越了现有唯一一种在合成数据基准上用全景三维物体探测单眼物体的方法,尽管现有方法仅对目标非直线投影进行训练,而我们仅对直径图像进行训练。我们还试验了真实的鱼眼图像的内部数据集。