We study the problem of scheduling precedence-constrained jobs on heterogenous machines in the presence of non-uniform job and machine communication delays. We are given as input $n$ unit size precedence-ordered jobs and $m$ related machines such that machine $i$ can execute up to $m_i$ jobs at a time. Each machine $i$ has an in-delay $\rho^{\mathrm{in}}_i$ and out-delay $\rho^{\mathrm{out}}_i$. Likewise, each job $v$ has an in-delay $\rho^{\mathrm{in}}_v$ and out-delay $\rho^{\mathrm{out}}_v$. In a schedule, job $v$ may be executed on machine $i$ at time $t$ if each predecessor $u$ of $v$ is completed on $i$ before time $t$ or on any machine $j$ before time $t - (\rho^{\mathrm{in}}_i + \rho^{\mathrm{out}}_j + \rho^{\mathrm{out}}_u + \rho^{\mathrm{in}}_v)$. The goal is to construct a schedule that minimizes makespan. We consider schedules that allow duplication of jobs as well as schedules which do not. When duplication is allowed, we provide an asymptotic $\mathrm{polylog}(n)$-approximation algorithms both when duplication is allowed and when it is not. We also obtain a true $\mathrm{polylog}(n)$-approximation for symmetric machine and job delays. These are the first polylogarithmic approximation algorithms for scheduling with non-uniform communication delays. We also consider a more general model, where the delay can be an arbitrary function of the job and the machine executing it: job $v$ can be executed on machine $i$ at time $t$ if all of $v$'s predecessors are executed on $i$ by time $t-1$ or on any machine by time $t - \rho_{v,i}$. We present an approximation-preserving reduction from the Unique Machines Precedence-constrained Scheduling (UMPS) problem, first defined in [DKRSTZ22], to this job-machine delay model. The reduction entails logarithmic hardness for this delay setting, as well as polynomial hardness if the conjectured hardness of UMPS holds.


翻译:我们研究如何在非统一的工作和机器通信延迟的情况下,在异质机器上安排超常限制的工作。 我们被分配为输入美元单位大小的超优级任务和美元相关机器, 这样机器美元可以一次执行高达1美元的工作。 每台机器美元都有一个在交易前 $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\美元。 同样, 每份工作美元都有在交易期间 $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月23日
Arxiv
0+阅读 · 2023年1月21日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员