Characterizing the graph classes such that, on $n$-vertex $m$-edge graphs in the class, we can compute the diameter faster than in ${\cal O}(nm)$ time is an important research problem both in theory and in practice. We here make a new step in this direction, for some metrically defined graph classes. Specifically, a subgraph $H$ of a graph $G$ is called a retract of $G$ if it is the image of some idempotent endomorphism of $G$. Two necessary conditions for $H$ being a retract of $G$ is to have $H$ is an isometric and isochromatic subgraph of $G$. We say that $H$ is an absolute retract of some graph class ${\cal C}$ if it is a retract of any $G \in {\cal C}$ of which it is an isochromatic and isometric subgraph. In this paper, we study the complexity of computing the diameter within the absolute retracts of various hereditary graph classes. First, we show how to compute the diameter within absolute retracts of bipartite graphs in randomized $\tilde{\cal O}(m\sqrt{n})$ time. For the special case of chordal bipartite graphs, it can be improved to linear time, and the algorithm even computes all the eccentricities. Then, we generalize these results to the absolute retracts of $k$-chromatic graphs, for every fixed $k \geq 3$. Finally, we study the diameter problem within the absolute retracts of planar graphs and split graphs, respectively.


翻译:图形类的特性是,在某类的美元顶端直径为$G$的直径图上,我们可以计算直径比$=美元O}(nm)美元直径快,这是理论和实践上的一个重要研究问题。我们在这里为某些按度定义的图形类朝这个方向迈出新的一步。具体地说,如果一个图形以美元计的子图是某位一G$的偏差和某位数直径的图像,则称为$G$的回溯值。对于美元绝对直径为$G$的回溯值,两个对美元绝对直径的绝对直径是美元直径的偏移值。首先,我们要说,美元是某些图形类的绝对回溯值$C$。如果是某位某位G$=ocal C}的回溯点,那么它是一个偏移的直径直径直径,在这个纸上,我们研究的是所有直径直径直线直径的绝对直径直径数是美元直径直径的直径直径直径直径直径直径直径直径直径直的直径直径直径直径直径直径直径直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
阿里120页PPT诠释国家“智能+”战略
智能交通技术
4+阅读 · 2019年4月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年3月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月4日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
阿里120页PPT诠释国家“智能+”战略
智能交通技术
4+阅读 · 2019年4月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年3月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员