Recent studies try to build task-oriented dialogue systems in an end-to-end manner and the existing works make great progress on this task. However, there is still an issue need to be further considered, i.e., how to effectively represent the knowledge bases and incorporate that into dialogue systems. To solve this issue, we design a novel Transformer-based Context-aware Memory Generator to model the entities in knowledge bases, which can produce entity representations with perceiving all the relevant entities and dialogue history. Furthermore, we propose Context-aware Memory Enhanced Transformer (CMET), which can effectively aggregate information from the dialogue history and knowledge bases to generate more accurate responses. Through extensive experiments, our method can achieve superior performance over the state-of-the-art methods.


翻译:最近的研究试图以端到端的方式建立面向任务的对话系统,而现有的工作在这项任务上取得了很大进展,然而,仍有一个问题需要进一步审议,即如何有效地代表知识基础并将知识基础纳入对话系统。为了解决这个问题,我们设计了一个新型的基于变异器的背景感应记忆生成器,在知识库中作为实体的模型,这种模型可以产生实体代表,能够感应所有相关实体和对话历史。 此外,我们提议了“环境觉悟记忆增强变异器 ” ( CMET ), 它可以有效地汇总对话历史和知识库的信息,从而产生更准确的反应。 通过广泛的实验,我们的方法可以取得优于最先进的方法的效果。

0
下载
关闭预览

相关内容

【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
92+阅读 · 2020年2月28日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
15+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年11月12日
VIP会员
相关VIP内容
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员