As robots venture into the real world, they are subject to unmodeled dynamics and disturbances. Traditional model-based control approaches have been proven successful in relatively static and known operating environments. However, when an accurate model of the robot is not available, model-based design can lead to suboptimal and even unsafe behaviour. In this work, we propose a method that bridges the model-reality gap and enables the application of model-based approaches even if dynamic uncertainties are present. In particular, we present a learning-based model reference adaptation approach that makes a robot system, with possibly uncertain dynamics, behave as a predefined reference model. In turn, the reference model can be used for model-based controller design. In contrast to typical model reference adaptation control approaches, we leverage the representative power of neural networks to capture highly nonlinear dynamics uncertainties and guarantee stability by encoding a certifying Lipschitz condition in the architectural design of a special type of neural network called the Lipschitz network. Our approach applies to a general class of nonlinear control-affine systems even when our prior knowledge about the true robot system is limited. We demonstrate our approach in flying inverted pendulum experiments, where an off-the-shelf quadrotor is challenged to balance an inverted pendulum while hovering or tracking circular trajectories.
翻译:由于机器人冒险进入现实世界,它们会受到未经改造的动态和干扰。传统的基于模型的控制方法在相对静态和已知的操作环境中被证明是成功的。然而,当没有精确的机器人模型时,基于模型的设计可能导致不优化甚至不安全的行为。在这项工作中,我们提出一种方法,可以弥合模型现实差距,并能够应用基于模型的方法,即使存在动态的不确定性。特别是,我们提出一种基于学习的模型的参考适应方法,使机器人系统,可能具有不确定的动态,作为预先确定的参考模型。反过来,参考模型可以用于基于模型的控制器设计。与典型的模型参考适应控制方法相反,我们利用神经网络的代表性力量来捕捉高度非线性动态不确定性,并通过在称为利普施奇茨网络的特殊类型神经网络的建筑设计中将证明性条件进行编码,从而保证稳定性。我们的方法适用于一个非线性控制室系统的一般类别,即使我们以前对真正的机器人系统的了解是有限的,也作为预设的参考模型。我们展示了我们的参考模型模型用于基于模型的控制模型的控制模型的设计设计。与典型的神经网络的代表能力,我们利用神经网络的动力来捕捉捉摸地,在旋转循环轨道上进行有挑战的旋转的轨道的轨道上。