We present Tensor4D, an efficient yet effective approach to dynamic scene modeling. The key of our solution is an efficient 4D tensor decomposition method so that the dynamic scene can be directly represented as a 4D spatio-temporal tensor. To tackle the accompanying memory issue, we decompose the 4D tensor hierarchically by projecting it first into three time-aware volumes and then nine compact feature planes. In this way, spatial information over time can be simultaneously captured in a compact and memory-efficient manner. When applying Tensor4D for dynamic scene reconstruction and rendering, we further factorize the 4D fields to different scales in the sense that structural motions and dynamic detailed changes can be learned from coarse to fine. The effectiveness of our method is validated on both synthetic and real-world scenes. Extensive experiments show that our method is able to achieve high-quality dynamic reconstruction and rendering from sparse-view camera rigs or even a monocular camera. The code and dataset will be released at https://liuyebin.com/tensor4d/tensor4d.html.
翻译:我们提出了Tensor4D,一种高效而有效的动态场景建模方法。我们解决方案的关键是一种高效的4D张量分解方法,使得动态场景可以直接表示为4D时空张量。为了解决伴随而来的内存问题,我们通过先将其投影到三个可感知时间的体积,再投影到9个紧凑的特征平面中的方式进行分解。通过这种方式,空间信息随时间捕捉并以一种紧凑且内存有效的方式同时得到记录。当应用Tensor4D用于动态场景重建和渲染时,我们进一步将4D场分解为不同的尺度,即从粗到细学习结构运动和动态细节变化。我们的方法的有效性在合成和实际场景中得到了验证。大量实验证明,我们的方法能够从稀疏视图摄像机阵列甚至单目摄像机中实现高质量的动态重建和渲染。该代码和数据集将发布在https://liuyebin.com/tensor4d/tensor4d.html。