We consider $\mathbb{Z}_2$-synchronization on the Euclidean lattice. Every vertex of $\mathbb{Z}^d$ is assigned an independent symmetric random sign $\theta_u$, and for every edge $(u,v)$ of the lattice, one observes the product $\theta_u\theta_v$ flipped independently with probability $p$. The task is to reconstruct products $\theta_u\theta_v$ for pairs of vertices $u$ and $v$ which are arbitrarily far apart. Abb\'e, Massouli\'e, Montanari, Sly and Srivastava (2018) showed that synchronization is possible if and only if $p$ is below a critical threshold $\tilde{p}_c(d)$, and efficiently so for $p$ small enough. We augment this synchronization setting with a model of side information preserving the sign symmetry of $\theta$, and propose an \emph{efficient} algorithm which synchronizes a randomly chosen pair of far away vertices on average, up to a differently defined critical threshold $p_c(d)$. We conjecture that $ p_c(d)=\tilde{p}_c(d)$ for all $d \ge 2$. Our strategy is to \emph{renormalize} the synchronization model in order to reduce the effective noise parameter, and then apply a variant of the multiscale algorithm of AMMSS. The success of the renormalization procedure is conditional on a plausible but unproved assumption about the regularity of the free energy of an Ising spin glass model on $\mathbb{Z}^d$.
翻译:我们考虑在 Euclidean lattice 上 $\\ mathb\\ $ 2美元 。 每个顶端$\ mathb\ $ d$ 指定一个独立的对称随机符号$\theta_ u美元, 而对于每端( u,v) $ lattice 美元, 我们观察产品 $\theta_ u\ thethat_ volonization, 概率为 $。 任务在于重建产品 $\theta_ u\ thethety lattle 。 每个顶端值$$( $mathblebral) 和$$$( $$) 。 Ab\ e, Massouli\'e, Montanari, Sly 和 Srivastavatava (2018) 显示,只有美元低于临界阈值 $\ titled\\\\\\\\\\\\\\ ph\ c (d) $( $) 美元, 美元(美元) 美元(美元) 美元), 美元(美元) 美元(美元) 美元) 美元(美元) 美元(美元) 美元),才能同步同步,才能同步同步同步。