We prove that given the ability to make entangled measurements on at most $k$ replicas of an $n$-qubit state $\rho$ simultaneously, there is a property of $\rho$ which requires at least order $2^n / k^2$ measurements to learn. However, the same property only requires one measurement to learn if we can make an entangled measurement over a number of replicas polynomial in $k, n$. Because the above holds for each positive integer $k$, we obtain a hierarchy of tasks necessitating progressively more replicas to be performed efficiently. We introduce a powerful proof technique to establish our results, and also use this to provide new bounds for testing the mixedness of a quantum state.
翻译:我们证明,鉴于能够同时对最多以美元计的1美元平方元的复制品进行缠绕式测量,因此存在一个需要至少订购2美元/克平方元的测量来学习的美元属性。然而,同一属性只需要一种测量就可以了解,如果我们能够对若干倍数的复制品进行缠绕式测量,以美元计,以美元计。由于以上为每个正整数,我们掌握着一种等级,需要逐步增加复制品的等级。我们引入了一种强大的验证技术来确定我们的结果,并用这种方法为测试量度状态的混合性提供新的界限。