A vehicle routing and crew scheduling problem (VRCSP) consists of simultaneously planning the routes of a fleet of vehicles and scheduling the crews, where the vehicle-crew correspondence is not fixed through time. This allows a greater planning flexibility and a more efficient use of the fleet, but in counterpart, a high synchronisation is demanded. In this work, we present a VRCSP where pickup-and-delivery requests with time windows have to be fulfilled over a given planning horizon by using trucks and drivers. Crews can be composed of 1 or 2 drivers and any of them can be relieved in a given set of locations. Moreover, they are allowed to travel among locations with non-company shuttles, at an additional cost that is minimised. As our problem considers distinct routes for trucks and drivers, we have an additional flexibility not contemplated in other previous VRCSP given in the literature where a crew is handled as an indivisible unit. We tackle this problem with a two-stage sequential approach: a set of truck routes is computed in the first stage and a set of driver routes consistent with the truck routes is obtained in the second one. We design and evaluate the performance of a metaheuristic based algorithm for the latter stage. Our algorithm is mainly a GRASP with a perturbation procedure that allows reusing solutions already found in case the search for new solutions becomes difficult. This procedure together with other to repair infeasible solutions allow us to find high-quality solutions on instances of 100 requests spread across 15 cities with a fleet of 12-32 trucks (depending on the planning horizon) in less than an hour. We also conclude that the possibility of carrying an additional driver leads to a decrease of the cost of external shuttles by about 60% on average with respect to individual crews and, in some cases, to remove this cost completely.


翻译:车辆路由和机组调度问题(VRCSP)包括:同时规划车队路线,同时规划车队路线,安排乘员时间不固定,车辆-机组人员通信不固定,这样可以有更大的规划灵活性,更高效地使用车队,但在对口,需要高度同步。在这项工作中,我们提出了车辆-机组人员使用卡车和司机在特定规划范围内满足带时间窗口的集货和交货要求的VRCSP。机组人员可以由1或2名司机组成,其中任何一个司机都可以在特定地点中解脱。此外,他们可以与非机组人员班车一起使用非机组人员通信,这样可以节省额外的费用。由于我们的问题考虑卡车和司机的不同路线,因此我们有更多的规划灵活性。 在文献中,机组人员作为不可分割单位处理的其他VRCSP没有预见到这种灵活性。我们用两阶段的顺序方法来解决这个问题:在第一阶段计算一套卡车路线,在第二阶段将一批司机的路线降低速度,在另一批次的卡车中,我们用非机组车辆穿车轮列的车辆,我们设计并评估15个机组车辆-机组规划过程的进度的进度的进度,在后期设计和评价中采用一个最困难的进度,在最后的进度上找到的进度中找到一个新的程序。我们用新的算算算。我们用新的程序,在最后的研算算算算算算算。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月28日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员