Interactive applications with automated feedback will largely influence the design of future networked infrastructures. In such applications, status information about an environment of interest is captured and forwarded to a compute node, which analyzes the information and generates a feedback message. Timely processing and forwarding must ensure the feedback information to be still applicable; thus, the quality-of-service parameter for such applications is the end-to-end latency over the entire loop. By modelling the communication of a feedback loop as a two-hop network, we address the problem of allocating network resources in order to minimize the delay violation probability (DVP), i.e. the probability of the end-to-end latency exceeding a target value. We investigate the influence of the network queue states along the network path on the performance of semi-static and dynamic scheduling policies. The former determine the schedule prior to the transmission of the packet, while the latter benefit from feedback on the queue states as time evolves and reallocate time slots depending on the queue's evolution. The performance of the proposed policies is evaluated for variations in several system parameters and comparison baselines. Results show that the proposed semi-static policy achieves close-to-optimal DVP and the dynamic policy outperforms the state-of-the-art algorithms.
翻译:自动反馈互动应用程序将在很大程度上影响未来网络基础设施的设计。 在这种应用程序中,将关于感兴趣环境的状况信息记录并传送到一个计算节点,该节点将分析信息并生成反馈信息。及时处理和转发必须确保反馈信息仍然适用;因此,这些应用程序的服务质量参数是整个循环的端到端悬浮。通过将反馈循环的通信建模成双跳网络,我们处理分配网络资源的问题,以尽量减少延迟违反概率(DVP),即终端到端悬浮超过目标值的概率。我们调查网络列队列状态对半静态和动态排期政策运行情况的影响。前一参数决定了信息包传输前的时间表,而后一参数则随着时间的演变和根据队列的演变重新分配时间档,从对队列状态的反馈中受益。根据若干系统参数和比较基线的变化,对拟议政策的绩效进行评估。结果显示,拟议的半静至端政策将实现动态到动态的动态政策。