Moderators and automated methods enforce bans on malicious users who engage in disruptive behavior. However, malicious users can easily create a new account to evade such bans. Previous research has focused on other forms of online deception, like the simultaneous operation of multiple accounts by the same entities (sockpuppetry), impersonation of other individuals, and studying the effects of de-platforming individuals and communities. Here we conduct the first data-driven study of ban evasion, i.e., the act of circumventing bans on an online platform, leading to temporally disjoint operation of accounts by the same user. We curate a novel dataset of 8,551 ban evasion pairs (parent, child) identified on Wikipedia and contrast their behavior with benign users and non-evading malicious users. We find that evasion child accounts demonstrate similarities with respect to their banned parent accounts on several behavioral axes - from similarity in usernames and edited pages to similarity in content added to the platform and its psycholinguistic attributes. We reveal key behavioral attributes of accounts that are likely to evade bans. Based on the insights from the analyses, we train logistic regression classifiers to detect and predict ban evasion at three different points in the ban evasion lifecycle. Results demonstrate the effectiveness of our methods in predicting future evaders (AUC = 0.78), early detection of ban evasion (AUC = 0.85), and matching child accounts with parent accounts (MRR = 0.97). Our work can aid moderators by reducing their workload and identifying evasion pairs faster and more efficiently than current manual and heuristic-based approaches. Dataset is available $\href{https://github.com/srijankr/ban_evasion}{\text{here}}$.
翻译:主持人和自动化方法对从事破坏性行为的恶意用户实施禁令。 但是, 恶意用户可以很容易创建新的账户, 以逃避此类禁令。 以前的研究侧重于其他形式的在线欺骗, 比如由相同实体( 玩偶游戏)同时操作多个账户, 假扮其他个人, 并研究破坏活动个人和社区的影响。 我们在这里进行第一个数据驱动的关于规避禁令的研究, 即绕过在网上平台上的禁令, 导致同一用户的账户暂时脱节运作。 我们整理了在维基百科上识别的8 551个禁止逃逸配对( 母子、 子)的新数据集, 并将它们的行为与良性用户和非损耗损恶意用户进行对比。 我们发现, 逃逸儿童账户与其在几条行为轴上的被禁父账户有相似之处, 从用户名称和编辑网页的类似之处到平台及其心理语言属性的相似之处。 我们发现, 账户的主要行为特征可能是逃避禁令的。 根据分析, 我们的准确性分析结果, C- 肝脏- 逃逃逸的配对账的评级分析结果显示, 将更能测算出未来周期的周期 。