Wheeler automata were introduced in 2017 as a tool to generalize existing indexing and compression techniques based on the Burrows-Wheeler transform. Intuitively, an automaton is said to be Wheeler if there exists a total order on its states reflecting the co-lexicographic order of the strings labeling the automaton's paths; this property makes it possible to represent the automaton's topology in a constant number of bits per transition, as well as efficiently solving pattern matching queries on its accepted regular language. After their introduction, Wheeler automata have been the subject of a prolific line of research, both from the algorithmic and language-theoretic points of view. A recurring issue faced in these studies is the lack of large datasets of Wheeler automata on which the developed algorithms and theories could be tested. One possible way to overcome this issue is to generate random Wheeler automata. Motivated by this observation, in this paper we initiate the theoretical study of random Wheeler automata, focusing on the deterministic case (Wheeler DFAs -- WDFAs). We start by extending the Erd\H{o}s-R\'enyi random graph model to WDFAs, and proceed by providing an algorithm generating uniform WDFAs according to this model. Our algorithm generates a uniform WDFA with $n$ states, $m$ transitions, and alphabet's cardinality $\sigma$ in $O(m)$ expected time ($O(m\log m)$ worst-case time w.h.p.) and constant working space for all alphabets of size $\sigma \le m/\ln m$. As a by-product, we also give formulas for the number of distinct WDFAs and obtain that $ n\sigma + (n - \sigma) \log \sigma$ bits are necessary and sufficient to encode a WDFA with $n$ states and alphabet of size $\sigma$, up to an additive $\Theta(n)$ term. We present an implementation of our algorithm and show that it is extremely fast in practice, with a throughput of over 8 million transitions per second.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Alphabet is mostly a collection of companies. This newer Google is a bit slimmed down, with the companies that are pretty far afield of our main internet products contained in Alphabet instead.
abc.xyz/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2021年5月3日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
13+阅读 · 2021年5月3日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员