We develop an efficient algorithm for weak recovery in a robust version of the stochastic block model. The algorithm matches the statistical guarantees of the best known algorithms for the vanilla version of the stochastic block model. In this sense, our results show that there is no price of robustness in the stochastic block model. Our work is heavily inspired by recent work of Banks, Mohanty, and Raghavendra (SODA 2021) that provided an efficient algorithm for the corresponding distinguishing problem. Our algorithm and its analysis significantly depart from previous ones for robust recovery. A key challenge is the peculiar optimization landscape underlying our algorithm: The planted partition may be far from optimal in the sense that completely unrelated solutions could achieve the same objective value. This phenomenon is related to the push-out effect at the BBP phase transition for PCA. To the best of our knowledge, our algorithm is the first to achieve robust recovery in the presence of such a push-out effect in a non-asymptotic setting. Our algorithm is an instantiation of a framework based on convex optimization (related to but distinct from sum-of-squares), which may be useful for other robust matrix estimation problems. A by-product of our analysis is a general technique that boosts the probability of success (over the randomness of the input) of an arbitrary robust weak-recovery algorithm from constant (or slowly vanishing) probability to exponentially high probability.
翻译:我们开发了一种高效的回收效率算法, 在一个稳健的软体区块模型的稳健版本中, 我们开发了一种高效的回收微弱的算法。 这个算法与最著名的香草版软体块模型香草版最有名的算法的统计保障相匹配。 从这个意义上讲, 我们的结果显示, 软体块模型的稳健性没有代价。 我们的工作在很大程度上受到银行、 Mohanty 和 Raghavendra (SODA 2021) 最近的工作的启发, 这为相应的区别问题提供了有效的算法。 我们的算法及其分析与以往的强力回收问题大相左。 一个关键的挑战就是我们算法背后的奇特的优化景观: 在完全无关的解决方案能够达到同样目标价值的意义上, 植入的分区可能远非最佳的算法。 这个现象与BBBBPP阶段块块块块块块块型模型的推进效应有关。 根据我们的知识, 我们的算法是第一个在非稳性环境下实现强力的推算法效果。 我们的快速框架是( 与总的概率性推算法的概率性推算法的概率性推算法的概率分析, ) 的概率性推算法的概率性推算法是其他的概率性推的概率性推的概率性推的概率性分析。