ACVI is a recently proposed first-order method for solving variational inequalities (VIs) with general constraints. Yang et al. (2022) showed that the gap function of the last iterate decreases at a rate of $\mathcal{O}(\frac{1}{\sqrt{K}})$ when the operator is $L$-Lipschitz, monotone, and at least one constraint is active. In this work, we show that the same guarantee holds when only assuming that the operator is monotone. To our knowledge, this is the first analytically derived last-iterate convergence rate for general monotone VIs, and overall the only one that does not rely on the assumption that the operator is $L$-Lipschitz. Furthermore, when the sub-problems of ACVI are solved approximately, we show that by using a standard warm-start technique the convergence rate stays the same, provided that the errors decrease at appropriate rates. We further provide empirical analyses and insights on its implementation for the latter case.
翻译:杨等人(2022年)指出,当操作员为L$-Lipschitz、单体酮和至少一个制约因素时,上一次循环的差值以美元=mathcal{O}(\frac{1unsqrt{K ⁇ )的速率下降,而操作员为美元-Lipschitz、单体酮和至少一个制约因素时,当操作员为美元-Lipschitz、单体酮和至少一个制约因素时,最后一次循环的差值下降率以美元=美元计算。在这项工作中,我们表明,只有在假设操作员为单体时,同样的保障才是有效的。据我们所知,这是对一般单体六的首次分析得出的最后一率趋同率,而且总体而言,是唯一不以操作员为L$-Lipschitz的假设为基础的差值下降率。此外,当ACVI的子问题大致得到解决时,我们表明,通过使用标准的热源启动技术,只要错误以适当的速率减少,那么合并率将保持不变。我们进一步提供经验分析和洞察对后一个案例的执行情况。