Improving the predictive capability of molecular properties in {\it ab initio} simulations is essential for advanced material discovery. Despite recent progress making use of machine learning, utilizing deep neural networks to improve quantum chemistry modelling remains severely limited by the scarcity and heterogeneity of appropriate experimental data. Here we show how training a neural network to replace the exchange-correlation functional within a fully-differentiable three-dimensional Kohn-Sham density functional theory (DFT) framework can greatly improve simulation accuracy. Using only eight experimental data points on diatomic molecules, our trained exchange-correlation networks enable improved prediction accuracy of atomization energies across a collection of 104 molecules containing new bonds and atoms that are not present in the training dataset.
翻译:提高宇宙初始值模拟中分子特性的预测能力对于先进的材料发现至关重要。 尽管最近利用机器学习取得了进步,但利用深神经网络改进量子化学建模仍然由于适当实验数据的稀缺性和异质性而受到严重限制。 这里我们展示了如何培训神经网络,以取代在完全可区分的三维Kohn-Sham密度功能理论(DFT)框架内的交换-相互关系功能,从而大大提高模拟准确性。 我们经过培训的交换-相互关系网络仅利用了8个关于二解分子的实验数据点,因此能够提高在培训数据集中不存在的104个含有新联结和原子的分子集成中的原子的耗尽能量预测准确性。