Improving the predictive capability of molecular properties in {\it ab initio} simulations is essential for advanced material discovery. Despite recent progress making use of machine learning, utilizing deep neural networks to improve quantum chemistry modelling remains severely limited by the scarcity and heterogeneity of appropriate experimental data. Here we show how training a neural network to replace the exchange-correlation functional within a fully-differentiable three-dimensional Kohn-Sham density functional theory (DFT) framework can greatly improve simulation accuracy. Using only eight experimental data points on diatomic molecules, our trained exchange-correlation networks enable improved prediction accuracy of atomization energies across a collection of 104 molecules containing new bonds and atoms that are not present in the training dataset.


翻译:提高宇宙初始值模拟中分子特性的预测能力对于先进的材料发现至关重要。 尽管最近利用机器学习取得了进步,但利用深神经网络改进量子化学建模仍然由于适当实验数据的稀缺性和异质性而受到严重限制。 这里我们展示了如何培训神经网络,以取代在完全可区分的三维Kohn-Sham密度功能理论(DFT)框架内的交换-相互关系功能,从而大大提高模拟准确性。 我们经过培训的交换-相互关系网络仅利用了8个关于二解分子的实验数据点,因此能够提高在培训数据集中不存在的104个含有新联结和原子的分子集成中的原子的耗尽能量预测准确性。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
17+阅读 · 2021年2月15日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
3+阅读 · 2018年10月11日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2017年7月17日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员