Local approximations are popular methods to scale Gaussian processes (GPs) to big data. Local approximations reduce time complexity by dividing the original dataset into subsets and training a local expert on each subset. Aggregating the experts' prediction is done assuming either conditional dependence or independence between the experts. Imposing the \emph{conditional independence assumption} (CI) between the experts renders the aggregation of different expert predictions time efficient at the cost of poor uncertainty quantification. On the other hand, modeling dependent experts can provide precise predictions and uncertainty quantification at the expense of impractically high computational costs. By eliminating weak experts via a theory-guided expert selection step, we substantially reduce the computational cost of aggregating dependent experts while ensuring calibrated uncertainty quantification. We leverage techniques from the literature on undirected graphical models, using sparse precision matrices that encode conditional dependencies between experts to select the most important experts. Moreov


翻译:本地近似是将高斯进程(GPs)与大数据相比的常用方法。 本地近似通过将原始数据集分成子集,并培训当地每组专家来降低时间复杂性。 将专家的预测汇总,假设专家之间的有条件依赖性或独立性。 在专家之间实施 \ emph{ 有条件独立假设} (CI) 使不同专家预测的汇总时间效率高,但代价是不确定性的量化差。 另一方面, 模拟依赖专家可以提供精确的预测和不确定性的量化,而牺牲不切实际的高计算成本。 通过理论引导的专家选择步骤消除薄弱的专家,我们大幅降低依赖专家集成的计算成本,同时确保校准的不确定性量化。 我们利用文献中的非定向图形模型技术,使用分散的精确矩阵将专家之间的有条件依赖性编码用于选择最重要的专家。 Moreov 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
70+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
已删除
将门创投
3+阅读 · 2019年9月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2020年12月10日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年9月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员