Graphs from complex systems often share a partial underlying structure across domains while retaining individual features. Thus, identifying common structures can shed light on the underlying signal, for instance, when applied to scientific discoveries or clinical diagnoses. Furthermore, growing evidence shows that the shared structure across domains boosts the estimation power of graphs, particularly for high-dimensional data. However, building a joint estimator to extract the common structure may be more complicated than it seems, most often due to data heterogeneity across sources. This manuscript surveys recent work on statistical inference of joint Gaussian graphical models, identifying model structures that fit various data generation processes. Simulations under different data generation processes are implemented with detailed discussions on the choice of models.
翻译:复杂系统中的图表往往在保留个别特征的同时,在各领域都有一个部分基本结构。因此,确定共同结构可以揭示基本信号,例如,在应用到科学发现或临床诊断时。此外,越来越多的证据表明,跨领域共有的结构提高了图形的估算力,特别是高维数据的估算力。然而,建立一个联合估算器来提取共同结构,可能比看起来复杂得多,这主要是因为不同来源的数据不均。本稿调查了最近关于联合高斯图形模型统计推论的工作,确定了适合各种数据生成过程的模型结构。在不同数据生成过程中进行模拟,对模型的选择进行了详细讨论。