Matrix representations are a powerful tool for designing efficient algorithms for combinatorial optimization problems such as matching, and linear matroid intersection and parity. In this paper, we initiate the study of matrix representations using the concept of non-commutative rank (nc-rank), which has recently attracted attention in the research of Edmonds' problem. We reveal that the nc-rank of the matrix representation of linear matroid parity corresponds to the optimal value of fractional linear matroid parity: a half-integral relaxation of linear matroid parity. Based on our representation, we present an algebraic algorithm for the fractional linear matroid parity problem by building a new technique to incorporate the search-to-decision reduction into the half-integral problem represented via the nc-rank. We further present a faster divide-and-conquer algorithm for finding a maximum fractional matroid matching and an algebraic algorithm for finding a dual optimal solution. They together lead to an algebraic algorithm for the weighted fractional linear matroid parity problem. Our algorithms are significantly simpler and faster than the existing algorithms.
翻译:矩阵表达方式是设计组合优化问题有效算法的有力工具, 如匹配、 线性机器人交叉点和对等。 在本文中, 我们使用非混合级概念( nc- rank) 启动矩阵表达方式的研究, 这一概念最近引起了Edmonds问题研究的注意。 我们发现, 线性机器人对等矩阵表达方式的排名与分数线性子机器人对等的最佳值相对应: 线性对等的半整体放松。 根据我们的表述方式, 我们为分数线性机器人对等问题提出了一个代数算法, 通过建立一个新技术, 将搜索到决定的削减纳入通过正数中代表的半整体问题。 我们还提出了一种更快的分化算法, 以找到最高分数的母对等, 以及找到双重最佳解决办法的代数算法。 它们共同导致为加权分数线性母体对等问题采用代数算法。 我们的算法比现有的算法简单得多。