Microstructural materials design is one of the most important applications of inverse modeling in materials science. Generally speaking, there are two broad modeling paradigms in scientific applications: forward and inverse. While the forward modeling estimates the observations based on known parameters, the inverse modeling attempts to infer the parameters given the observations. Inverse problems are usually more critical as well as difficult in scientific applications as they seek to explore the parameters that cannot be directly observed. Inverse problems are used extensively in various scientific fields, such as geophysics, healthcare and materials science. However, it is challenging to solve inverse problems, because they usually need to learn a one-to-many non-linear mapping, and also require significant computing time, especially for high-dimensional parameter space. Further, inverse problems become even more difficult to solve when the dimension of input (i.e. observation) is much lower than that of output (i.e. parameters). In this work, we propose a framework consisting of generative adversarial networks and mixture density networks for inverse modeling, and it is evaluated on a materials science dataset for microstructural materials design. Compared with baseline methods, the results demonstrate that the proposed framework can overcome the above-mentioned challenges and produce multiple promising solutions in an efficient manner.
翻译:微生物材料设计是材料科学中反建模的最重要应用之一。一般而言,科学应用中有两个广泛的建模模式:前向和反向。前向建模估计根据已知参数进行的观测,而前向建模则估计根据已知参数进行的观察,反向建模试图推断所观察到的参数。反向问题通常在科学应用中更为关键和困难,因为它们试图探索无法直接观察到的参数。反向问题在许多科学领域,例如地球物理学、保健和材料科学中广泛使用。然而,解决反向问题具有挑战性,因为它们通常需要学习一对一的非线性非线性绘图,还需要大量计算时间,特别是高维参数空间。此外,当投入(即观察)的层面比产出(即参数)要低得多时,反向问题就更加难以解决。在这项工作中,我们提出了一个由反向型的基因对抗网络和混合密度网络组成的框架,并且对反向建模,因为这些问题通常需要学习一对多个非线性绘图,而且也需要大量计算时间,特别是对于高维参数空间空间空间。此外,当进(即观察)的工程(即观察)的层面(即比较)的模型设计中,则更难以解决的模型式方法时,则会比出一个有希望获得的模型式的模型式的模型式的模型式的模型的模型式的模型的模型。